[20] J. Transfiguracion, A. Bernier, R. Voyer, H. Coelho, M. Coffey, and A. Kamen,
“Rapid and reliable quantification of reovirus type 3 by high performance liquid
chromatography during manufacturing of Reolysin,” J. Pharm. Biomed. Anal.,
vol. 48, no. 3, pp. 598–605, Nov. 2008, doi: 10.1016/j.jpba.2008.05.038
[21] K. A. Brogden, “The sweet spot: defining virus–sialic acid interactions Jennifer,” Nat.
Rev. Microbiol., vol. 3, no. 11, pp. 238–250, 2005, doi: 10.1038/nrmicro3346.
[22] H. B. Donald and a Isaacs, “Counts of influenza virus particles,” J. Gen. Microbiol.,
vol. 10, no. 3, pp. 457–464, Jun. 1954.
[23] A. M. Hashem et al., “A novel synthetic receptor-based immunoassay for influenza
vaccine quantification,” PLoS One, vol. 8, no. 2, p. e55428, Jan. 2013, doi: 10.1371/
journal.pone.0055428
[24] M. Rusnati, P. Chiodelli, A. Bugatti, and C. Urbinati, “Bridging the past and the
future of virology: Surface plasmon resonance as a powerful tool to investigate
virus/host interactions,” Crit. Rev. Microbiol., vol. 7828, no. February, pp. 1–23,
2013, doi: 10.3109/1040841X.2013.826177
[25] Y. F. Chang et al., “Simple strategy for rapid and sensitive detection of avian in-
fluenza A H7N9 virus based on intensity-modulated SPR biosensor and new gen-
erated antibody,” Anal. Chem., vol. 90, no. 3, pp. 1861–1869, 2018, doi: 10.1021/
acs.analchem.7b03934
[26] S. Khurana, L. R. King, J. Manischewitz, E. M. Coyle, and H. Golding, “Novel
antibody-independent receptor-binding SPR-based assay for rapid measurement of
influenza vaccine potency,” Vaccine, vol. 32, no. 19, pp. 2188–2197, 2014, doi:
10.1016/j.vaccine.2014.02.049
[27] C. A. Rossi et al., “Evaluation of ViroCyt® Virus counter for rapid filovirus
quantitation,” Viruses, vol. 7, no. 3, pp. 857–872, 2015, doi: 10.3390/v7030857
[28] Z. Szakács, T. Mészáros, M. I. De Jonge, and R. E. Gyurcsányi, “Selective counting
and sizing of single virus particles using fluorescent aptamer-based nanoparticle
tracking analysis,” Nanoscale, vol. 10, no. 29, pp. 13942–13948, 2018, doi: 10.103
9/c8nr01310a
[29] N. Sanchez et al., “Rabies vaccine characterization by nanoparticle tracking ana-
lysis,” Sci. Rep., vol. 10, no. 1, pp. 1–8, 2020, doi: 10.1038/s41598-020-64572-6
[30] L. Yang and T. Yamamoto, “Quantification of virus particles using nanopore-based
resistive-pulse sensing techniques,” Front. Microbiol., vol. 7, no. SEP, Article
1500, 2016, doi: 10.3389/fmicb.2016.01500
[31] B. Lorbetskie et al., “Optimization and qualification of a quantitative reversed-phase
HPLC method for hemagglutinin in influenza preparations and its comparative
evaluation with biochemical assays,” Vaccine, vol. 29, no. 18, pp. 3377–3389,
Apr. 2011, doi: 10.1016/j.vaccine.2011.02.090
[32] J. Transfiguracion, H. Coelho, and A. Kamen, “High-performance liquid chromato-
graphic total particles quantification of retroviral vectors pseudotyped with vesicular
stomatitis virus-G glycoprotein,” J. Chromatogr. B, vol. 813, no. 1–2, pp. 167–173,
2004.
[33] P. S. Chahal, J. Transfiguracion, A. Bernier, R. Voyer, M. Coffey, and A. Kamen,
“Validation of a high-performance liquid chromatographic assay for the quantifi-
cation of Reovirus particles type 3,” J. Pharm. Biomed. Anal., vol. 45, no. 3,
pp. 417–421, Nov. 2007, doi: 10.1016/j.jpba.2007.06.025
[34] M. B. Haack, A. E. Lantz, P. P. Mortensen, L. Olsson, and A. E. L. P. P. M. L. O.
Martin B. Haack, “Chemometric analysis of in-line multi-wavelength fluorescence
measurements obtained during cultivations with a lipase producing Aspergillus
oryzae strain,” Biotechnol. Bioeng., vol. 9999, no. 9999, 2006, doi: 10.1002/bit
[35] C. Schaefer, D. Clicq, C. Lecomte, A. Merschaert, E. Norrant, and F. Fotiadu, “A
Process Analytical Technology (PAT) approach to control a new API manufacturing
222
Bioprocessing of Viral Vaccines